US006647395B1

a2z United States Patent (10) Patent No.: US 6,647,395 B1
Kurzweil et al. 5) Date of Patent: Nov. 11, 2003

(54) POET PERSONALITIES OTHER PUBLICATIONS

Raymond Kurweil, “The Age of Spiritual Machines™, 1990,
MIT Press, Part IV—“A (Kind of) Turing Test”—Excerpts
from his book, iBuilder of NorthWest Florida, 2001, www.

(75) Inventors: Raymond Kurzweil, Newton, MA
(US); John A. Keklak, Sudbury, MA

(US) penguinputnam.com/static/package/us/kurzweil/press/
(73) Assignee: Kurzweil Cyberart Technologies, Inc., pressmain.htm. *))
Wellesley Hills, MA (US) Stanley F. Chen, Lattice Rescorer (v0.2) User’s Guide, 1997,

pp. 1-16.*
(*) Notice: Subject to any disclaimer, the term of this A Brief History of Ray Kurzweil’s Cybernetic Poet (RKCP),
patent is extended or adjusted under 35 Kurzweil CyberArt Technologies, 2000, pp. 1-3, http:/

U.S.C. 154(b) by 430 days. kurzweilcyberart.com/poetry/rkep_ historyofrkep.*
Raymond Kurzweil, “The Age of Intelligent Machines: A
(21) Appl. No.: 09/704,104 (KInd of) Turing”, 1996-1999, Kurzweil CyberArt Tech-

nologies, Inc., http://www.kurzweilcyberart.com/poetry/
rkep_akindofturingtest. ™

“The Age of Intelligent Machines,” Raymond Kurzweil, The
MIT Press, 1992, pp. 116, 370, 374-379.

(22) Filed: Nov. 1, 2000

Related U.S. Application Data
(60) Provisional application No. 60/162,882, filed on Nov. 1,

1999, “The Age of Spiritual Machines,” When Computers Exceed
Human Intelligence, Ray Kurzweil, Viking, 1999, pp.
(51) Int. CL7 oo GOGF 17/00 7476, 162-166, 182-186, 310.

* cited by examiner

(G2 T VT o K WOU02 b oy Examiner—Greta Robinson

Assistant Examiner—Linh Black
(74) Attorney, Agent, or Firm—Fish & Richardson, P.C.

(56) References Cited 57) ABSTRACT

U.S. PATENT DOCUMENTS A method of generating a poet personality including reading
4,559,508 A * 12/1985 Goldwasser et al. 715/531 poems, each of the poems containing text, generating analy-
4712,174 A 12/1987 Minkler, II sis models, each of the analysis models representing one of
4958285 A * 9/1990 Tominaga poems and storing the analysis models in a personality data

FOREIGN PATENT DOCUMENTS structure. The personality data structure further includes
weights, each of the weights associated with each of the

(58) Field of Search 707/1-10, 100-104.1

CN 1100966 A * 4/1995 A63F/1/00 analysis models. The weights include integer values.
JP 401217549 A * 8/1989 .. GO6F/15/20
IP 409103535 A * 4/1997 ... A63F/3/00 27 Claims, 11 Drawing Sheets

250 Poet’s Assistant GUI 250

Il—:ET Untitled-Assistant

File Edit View Assistant Help

E‘D @F?—HYP] I rTell a Friend...] |

to be orjnatito be

1 Poets Assistant]
254~ | arsel e o Word st o nal s o Poar
Post (8 Biowning & Srakespears 3]
Suggastians:
ta tha a bain so

252

[~—

to the so ba amy

256

Posts Assistant

i 258~ P
| J[Poets Assistant]
[AiterationRhymes/Encings]{Next Word[Rest of Line] Rest of Foem|

Foat [EB Browning & Shakespeare_ |Iv]

Suggestions:

L N

Post: [EB Browning & Shakespeare _ |e] L Aoy b al mades |

Make bul slow

Bl |
e |

For Help, press F1 f 1

R o o 5 I
[Start][EExploring-991_ J[@Ray Kuraweils. J[&) Cybemetic Post]f_Juntiled - A~][] unfitied - Paint _

U.S. Patent Nov. 11, 2003 Sheet 1 of 11 US 6,647,395 B1

0w ©0
N &
NN
< 8
> ||
P g e
| @
S IR5lE
® 1Qla
k)
0]
Q
- | X
g
—r
N
=
R ©
g N =
o S .
2 Q
n R
S
8
:Q:_S
£ N o
o) o
&) O
(6]
N
~|E 52
/’ 3 Qo
£
eE < *
Q N|
» N
)
%)

US 6,647,395 Bl

Sheet 2 of 11

Nov. 11, 2003

U.S. Patent

¥ Old
W\ wels
e\ mouy
LA W
W\ qwe
.

¢ 9ld

waod mapN indinQ

y

\-g¢

waod

MBN 9)elaus0)

L 3

ot

[opPOIN SisAjeuy
Joyiny ojeisuas)

\pE

wood

[euibuQ azAjeuy

\-ze

$Sa00.d
uonelauan) Ansod

N

U.S. Patent Nov. 11, 2003 Sheet 3 of 11 US 6,647,395 B1

40
Generate Original ™

Poem Process

42~

Read Selection(s)
of Poem(s)
by Particular Author

44~ ‘

Generate and
Store Author
Analysis Model(s)

46~ ,

Select User Interface

48~ v 50~ ‘
Poet's Asst. Screen Saver
Ul Ul
52~ v
Generate Original
Poem(s) from Author
Analysis Model(s)
54~ ‘
Display or Store
Poems

FIG. 3

U.S. Patent

Nov. 11, 2003

Sheet 4 of 11

60
Analyze Text\‘

rocess

62~

Text

Process Input 1

64~ J

Discard Title

86~ 1
Place BOP

68Ny
Place BOL

0~y
Place EOL l

72~]

Discard C/R
and L/F

74\ I

Terminate with
EOP

76Ny

Generate n-Gramsl

FIG. 5

US 6,647,395 Bl

U.S. Patent Nov. 11, 2003 Sheet 5 of 11 US 6,647,395 B1

80
Process to\‘
Generate 1-Grams 82~
Process Text
84\ Y
Scan Processor
Text
96~
Set Up n-Gram Perform Hash
Structure Table Look-Up
94~
Add Word to
Hash Table
92~ Yes 98,
Increment ;
n-Gram Count (Exit)

FIG. 6

U.S. Patent Nov. 11, 2003 Sheet 6 of 11 US 6,647,395 B1

Process to
Generate Bigrams
102~

Find Examples of
Word in Text

104~ ,

Generate List

106~ l

Generate n-Gram at
Bigram Level with
Pointers

FIG. 7

110
Process to N
Generate Trigrams
112~

Find All Examples
of Bigram in Text

114~ l

Generate List of
Following Trigram
Words

116~ A

Generate n-Gram
Structure at Trigram
- Level with Pointers

FIG. 8

U.S. Patent Nov. 11, 2003 Sheet 7 of 11 US 6,647,395 B1

Process to Generate
a Quadrigram
122\

Find All Occurrences
of Trigram in Text

124~ l

Generate List of
Following Quadrigram

126~ l

Generate Appropriate
Pointers

FIG. 9

Process for Writing a
m

Line with Rhyt 19
N

Write a Word

FIG. 13

U.S. Patent Nov. 11, 2003 Sheet 8 of 11 US 6,647,395 B1

130\
Process for Basic 132
Word Generation /
—1 Generate List of Words
Receive a Word
I 136

Determine Count for
n-Gram Structure

Compute Score for Word

~140

A
Select Next Word from List of
Possible Bigram/Trigram/
Quadrigram Words

v I 142
Select Root Word BOP

Y 144
Write Word Ending in EOP

146

Any

Yes More)}Nords

148

FIG. 10

US 6,647,395 Bl

Sheet 9 of 11

Nov. 11, 2003

U.S. Patent

vi Old

11574

é
dO3 WYim pu3z
USRI PIOM

8cc

L1 ©OlId

011

é
d03 Yiim puy
USHM PIOM

891

ouIT BJUM

azZyen|

, 92z

4 \-g9|

SO|qelEeA azijeiiu|

PIOAA pajuLdun
0} SJUI0d wels) Lu

vz

(244

WPAYY Yyim weod
e Bunuap 10} sso201d A
0ze

4 491

PIOM

pajuudun yum uejs

\-zal

WYAYY INOYIA Waod
e BunLIp 40} SSa001d
X090l

U.S. Patent Nov. 11, 2003 Sheet 10 of 11 US 6,647,395 B1

180 —
Pracess for Writing 182
a Word with Rhythm

Initialize Success

. 184
Select a Word

Line
Successful
?

y 192
Display Word

200 194

Update Pointers

Line in Play

y 202 ?
Display Word No | 196
. Update Success
204
— Variable
Update Pointers

! 188
_ Back Up §
One Word [

{ Exit)

FIG. 12

US 6,647,395 Bl

Sheet 11 of 11

Nov. 11, 2003

U.S. Patent

Gl Old

Rats. o

|
—! ! l,. 14 s5eud ‘dioH J04

e -pemun[J] - pemunl Yisod onsweafp][spemainy feye [~166-buvoidxafpiueis ua

[a]

] 1ou 10 Bq 1w Bunwbeq wWaod £ 5)HCWOD 0} A8M JOUJOUE BiRIBua0)

L5500 _ffueisiesy man | L ussu Jifl__opey i

JOu 108G, ypm BuwuiBaq au)| & 8) 9900 O) ABm sBIOUE B|RIBUD

_

_

= Tou | 1euL
“ a4 i
I

[

ﬁ

,

I

o8) op Aoy
uns ey| uelL
MOIS 11 SHBA
88Y) 1O Jeam
:suonsabbng

[P0 oAy J [omodsoweus 3 Gnmoigg3] 300d

o} yBnoua
suonselbng

oseadsayeys ¢ Sunmoig mw_ 1304

86¢ Woog §0 150 laury jo seyfniom icz?mc_ocmuuicm?o%ﬁ__z
jueysissy s)80d ||
9¢e

Awgegosey o)
08 U B B 8y)

:suoysebbng

[sepow e o fiddy [J[a] eveadseneys g Buwmoiggs] 3e0d

[tweod jo 1sayfieun 10 158%] props 1xen [sSupuarsewduy fuoneseuiy] $cZ
, JUEJSISSY 51804 oq OO 105G 01

Tpusld BBl

CHRN || YA I E R =)

dieH jeisissy maipa W3 eg ‘

N-z62

weisissy-papiun (]

INS JUelsISsY S,180d 0§52~

US 6,647,395 B1

1
POET PERSONALITIES

CLAIM OF PRIORITY

This application claims priority under 35 USC §119(e) to
U.S. patent application Ser. No. 60/162,882, filed on Nov. 1,
1999, the entire contents of which are hereby incorporated
by reference.

BACKGROUND

This invention relates to generating poetry from a com-
puter.

A computer may be used to generate text, such as poetry,
to an output device and/or storage device. The displayed text
may be in response to a user input or via an automatic
composition process. Devices for generating poetry via a
computer have been proposed which involve set slot gram-
mars in which certain parts of speech, that are provided in
a list, are selected for certain slots.

SUMMARY

In an aspect, the invention features a method of generating
a poet personality including reading poems, each of the
poems containing text, generating analysis models, each of
the analysis models representing one of poems and storing
the analysis models in a personality data structure. The
personality data structure further includes weights, each of
the weights associated with each of the analysis models. The
weights include integer values.

In another aspect a poet’s assistant method including
loading a word processing program, receiving a word in the
word processing program provided by a user, displaying
poet windows in response to receiving the word and pro-
cessing the word in each of the windows. The poet windows
may include combinations of a finish word window, a finish
line window and a finish poem window. Processing the word
in the finish word window includes loading an analysis
model, locating the word in the analysis model and gener-
ating a proposed word in conjunction with the author
analysis model.

The details of one or more embodiments of the invention
are set forth in the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and
drawings, and from the claims.

DESCRIPTION OF DRAWINGS

The foregoing features and other aspects of the invention
will be described further in detail by the accompanying
drawings, in which:

FIG. 1 is a block diagram of a computer system storing a
poetry generation process.

FIG. 2 is a flow diagram of a poetry generation process
using the system of FIG. 1.

FIG. 3 is a flow diagram of a poem generation process
using the system of FIG. 1.

FIG. 4 is a table of exemplary word formats used by the
process of FIG. 3.

FIG. 5 is a flow diagram of the process used to analyze
text.

FIG. 6 is a flow diagram of the generation of 1-grams used
by the process of FIG. 3.

FIG. 7 is a flow diagram of the generation of bigrams used
by the process of FIG. 3.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 8 is a flow diagram of the generation of trigrams used
by the process of FIG. 3.

FIG. 9 is a flow diagram of the generation of quadrigrams
used by the process of FIG. 3.

FIG. 10 is a flow diagram of the generation of words used
by the process of FIG. 3.

FIG. 11 is a flow diagram of the generation of a poem
without rhythm and rhyme structure used by the process of
FIG. 3.

FIG. 12 is a flow diagram of the generation of a word with
rhythm and rhyme structure used by the process of FIG. 3.

FIG. 13 is a flow diagram of the generation of a line with
rhythm and rhyme structure used by the process of FIG. 3.

FIG. 14 is a flow diagram of the generation of a poem with
rhythm and rhyme structure used by the process of FIG. 3.

FIG. 15 is a diagram of an exemplary poet’s assistant
graphical user interface.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

Referring to FIG. 1, a system 10 for generating poetry
includes at least a computer system 12 that can include a
central processing unit (CPU) 14, a memory 16 containing
a poetry generation process (not shown), a link 18 to a
storage device 20, and a link 22 to a display unit 24. The
storage device 20 may contain one or more data files 26 and
28. The display unit 24 also includes an input device 30,
such as a keyboard and mouse, for example. The memory 16
includes a windows-based operating system (not shown),
such as Microsoft Windows® or Linux® with Xfree
Windows, for example, and a word processing program (not
shown), such as Microsoft Word® or Corel WordPerfect®
Claim, for example.

In a particular embodiment, the operating system is Win-
dows 95® and the computer system 10 includes Microsoft
Word95®, both from Microsoft Corporation of Redman,
Wash. Further, the computer system 10 includes a minimum
of four megabytes of random access memory (RAM) and
twenty megabytes of storage space on the storage device 20.

Referring to FIG. 2, a poetry generation process 30
analyzes 32 an original poem and generates 34 an author
analysis model. New poems are automatically generated 36
in conjunction with the author analysis model and/or in
response to user input. The new poetry is outputted 38 to a
display, printed or stored on a storage device.

Referring to FIG. 3, a process 40 to generate an original
poem includes scanning 42 selections of poems by an author.
The poems scanned are used to generate and store 44 an
author analysis model. A user selects 46 an interface,
specifically, a poetic assistant interface 48 and/or a screen
saver interface 50. The process generates 52 an original
poem(s) from the author analysis model. The original poem
(s) is displayed 54 on the display unit, or stored on a suitable
storage medium. The poem will have a similar style to the
poem(s) originally analyzed and contained in the author
analysis model, but will be original poetry generated by the
process 30 (of FIG. 2).

The process 40 (of FIG. 3) may combine authors by
generating poet personalities using multiple author analysis
models. A poet personality also includes a set of parameters
that control certain aspects of the poetry generation process.
Thus, there can be a combination of author analysis models
in a single poet personality.

As indicated above, selections of poems by an author are
scanned by the process 40 to generate an author analysis

US 6,647,395 B1

3

model. The selection of poems typically includes an input
file of poems with titles of a particular author. In a particular
embodiment, poems to be analyzed are contained in an
ASCII text file that contains one poem after another. Each
poem contains a title, a blank line, the poem on multiple
lines, with one blank line between stanzas, and another
blank line. At the end of the poems a terminal line containing
only “******* may optionally be placed. However, the
process will stop reading the input poem(s) at the end of the
ASCII text file.

Rhyme words are marked with a rhyme number during
initial processing of the ASCII text, i.e., words which rhyme
with each other, are specified in the author analysis model by
the characters “\\\number\\\”, where number is an integer
with no commas, e.g., \W\W4\\\. Words that rhyme with each
other would have the same number, generally referred to as
rhyme numbers, and thus be a member of the same rhyme
set. Rhyme words are expected only at the end of a line and
the thyme number typically starts over with each stanza.

Referring to FIG. 4, table 56 having words and their
associated rhyme numbering is shown for the poem “why go
slam, know the lamb.” The words “lamb” and “slam” are
both numbered \W1\\\ since they rhyme with each other and
are placed in a first rhyme set, while “go” and “know” are
numbered \\\2\\\ since they rhyme with each other, and not
with “lamb” and “slam,” and thus are numbered to indicate
membership in a second rhyme set. The resulting poem is;
why go W2\\\slam\WIW, know \W2\\\ the lamb \WI\\.

Once marked with rhyme numbers, the text is further
analyzed to generate a linked data structure that specifies all
n-grams found in the text, where 2<=n <=4. Ngrams are
sequences of n consecutive characters in a document.
Ngrams are generated from a document by sliding a “win-
dow” of n characters wide across the document’s text,
moving it one character at a time. Thus, the word “testing”
would generate the penta-grams “testi” “estin™ and “sting”.
In addition, all text may be converted to a single case and
non-alphabetic characters may be turned into spaces. After
these transformations, sequences of consecutive blanks are
compressed into a single space. The linked data structure
(also referred to as an n-gram data structure) is stored in a
data file located on a suitable storage unit as an author
analysis model.

The end of line (EOL), end of poem (EOP), beginning of
line (BOL), and beginning of poem (BOP) are considered
special characters. In a particular embodiment, each stanza
is considered to be a poem. There is no difference between
the end of a stanza in an input set of poems to be analyzed
and the end of the last stanza in a poem. In one embodiment,
the process writes one stanza poems. For other embodiments
the process may write multiple stanza poems. Thus, for any
user input word the process can access a linked data struc-
ture from the data file of author analysis models and deter-
mine all of the words that followed that user input word in
the author analysis model, along with a count for that
bigram.

Punctuation also is attached to the word it abuts. For
example, “house” differs from “house,” or “house!”. For any
pair of user input words the process can access linked data
structure from the data file of author analysis models and
determine all of the words that followed that word in the
author analysis model along with a count for that trigram.
For any triple grouping of user input words, the process can
access a linked data structure and determine all the words
that followed that word in the author analysis model with a
count for that quadrigram. In a particular embodiment, a

10

15

20

25

30

35

40

45

50

55

60

65

4

word hash table allows looking up a word in the author
analysis model and quickly determining a pointer into linked
data structure.

Thus, for each word, line, and stanza analyzed from an
author, its corresponding linked data structure is generated
and includes at least the following elements:

(1) Pointer to a word

(2) Number of characters in the word

(3) Count for this n-gram

(4) Pointer to the next structure in the chain
(5) Pointer to first structure at level n+1

(6) Number of structures at level n+1
In a preferred embodiment, the above linked data struc-
ture elements are the following data types using the C
language:
ngram DEFTYPE struct
(1) *CHAR
(2) BYTE
(3) SHORT
(4) *ngram
(5) *ngram
(6) SHORT
Other data definitions preferably included in the ngram
structure are the following, with their C language data type
following:

*gram Pointer to first structure

*gram Pointer to last structure assigned

SHORT Number of structures assigned

nl_ gram pointer to the first word in the
ngram structures during decoding

n2__gram pointer to the second word in the
ngram structures during decoding

n3__gram pointer to the third word in the
ngram structures during decoding

n4__gram pointer to the fourth word in the
ngram structures during decoding

hash_0 pointer to the first entry in the
hash table for words, entries
are addresses which point to the
first character of a word.

hash_ size number of entries allocated in word
hash table

hash__assign_n number of entries assigned in word
hash table

hash__word_n pointer to first entry in associated
hash table which contains the
size of each word

pointer to first entry in the hash
table for rhyme words

number of entries allocated in rhyme
hash table

pointer to first entry in the
associated rhyme hash table
which contains the size of each
word

pointer to current rhyme

target word in ngram

structures

time limit for first phase of
recursive line generation

time limit for second phase of
recursive line generation

time limit for third phase of
recursive line generation

time limit for fourth phase of
recursive line generation

weight of an author within a poet
personality

bigram count for a word for which a
score is being computed

rhyme_ hash_ 0
rhyme__hash__size

rhyme_ hash_ n

currentirhymeitarget

time_ limit 1
time_ limit_ 2
time_ limit 3
time_ limit_ 4
author_ weight

ngram_2_ count

US 6,647,395 B1

5

-continued

ngram__2_ weight weight for the bigram for this author
within this poet personality
exponent for the bigram count

for this author within this

poet personality

trigram count for a word for which a
score is being computed

weight for the trigram for this
author within this poet

personality

exponent for the trigram count

for this author within this

poet personality

quadrigram count for a word for which
a score is being computed

weight for the quadrigram ram for
this author within this poet
personality

exponent for the quadrigram count
for this author within this

poet personality

ngram_ 2 exponent

ngram_3_ count

ngram__3_ weight

ngram_ 3 exponent

ngram_ 4 count

ngram__4_ weight

ngram_ 4 _exponent

Referring to FIG. 5, a process 60 used to analyze text
includes generating an n-gram by processing 62 input text,
such as ASCII text stored in an input file. Lines containing
a title are ignored and discarded 64. A first word in the text
under analysis has a special character (BOP) placed 66 in
front of the first character. The last word in the poem has a
special character (EOP) placed 68 after a last character of the
word. The first word in each line has a special character
(BOL) placed 70 in front of the first character. The last word
in each line has a special character (EOL) placed 72 after the
last character of the word. Carriage return and linefeed
characters are discarded 74. All punctuation associated with
the word is treated like any other character. Each stanza is
treated as a separate poem, and the last word of the stanza
is an end-of-poem word and is terminated 76 with the (EOP)
character. The process 60 generates 76 a linked data struc-
ture for the text. The linked data structure includes 1-grams,
bigrams, trigrams, and quadrigrams in both a forward and
backward direction. As mentioned above, for any subse-
quent user input word, the process 60 can locate the user
input word in the linked data structure and determine words
that follow it in the link structure. The process 60 may also
“back up” one word in the linked data structure, if needed.

Referring now to FIG. 6, the process 80 used to generate
the 1-grams from the processed text of FIG. § includes
feeding 82 the processed text and scanning 84 the processed
text word by word. The process determines 86 whether a
word has been scanned. For each word scanned, a look-up
is performed 88 on a word hash table. A determination 90 is
made as to whether the word was found in the word hash
table.

If the word is found in the word hash table, the appropriate
count in the link structure (ngram structure) for the word is
incremented 92 and the process checks 86 whether another
word was scanned. The count indicates a number of occur-
rences of the word in the link structure. If the word is not
found in the word hash table, the word is added 94 to the
word hash table and a hash assign number is associated with
the word. The process 80 sets up 96 1-gram in the n-gram
structure for the word. The ngram structure will include at
least an address of the first character of the word, the number
of characters in the word, and a count equal to one. All of the
1-gram words will be in a chain in the ngram structure. The
process 80 then checks 86 whether another word was
scanned. If not, the process 80 exits 98.

Referring to FIG. 7, a process 100 used to generate
bigrams includes, for each 1-gram in a linked data structure,

10

15

20

25

30

35

45

50

55

60

65

6

all examples of the word in the scanned text are found 102.
A list of words that follow the word being scanned, along
with associated counts, is generated 104 for each word. For
each following word, an ngram structure at the bigram level
with appropriate pointers is generated 106. The ngram
structure at the bigram level will include at least an address
of the first character of the second word in the bigram, the
number of characters in the word being scanned, a count
equal to one, and an address of next bigram for the word
being scanned to provide a chain of words.

To generate a trigram, the process assumes that all of the
1-gram words will be in a chain in the ngram structures.
Each 1-gram in the linked data structure is processed and, all
of the bigrams for that word are scanned.

Referring now to FIG. 8, a process 110 used to generate
trigrams determines 112 all examples of the bigram in the
text. A list of all words that follow the bigram with counts
for each trigrams word is generated 114. For each trigram,
an ngram structure at the trigram level with the appropriate
pointers is generated 116. The appropriate link structure for
each trigram includes at least the address of the first char-
acter of the third word in the trigram, the number of
characters in the word, count set equal to zero, and an
address of a next trigram for the word under analysis, to
generate a chain of trigrams for the word being scanned.

To generate a quadrigram, the process 100 assumes of the
1-gram words are in a chain of words in the ngram struc-
tures. Each word in the chain is processed. For each word,
all of the bigrams for that word are scanned. For each
bigram, all of the trigrams for the word under analysis are
scanned.

Referring now to FIG. 9, a process 120 used to generate
a quadrigram locates 122 all occurrences of the trigram in
the text being processed. A list of all words following the
associated trigram with counts for each scanned word is
generated 124. For each quadrigram, an ngram structure at
the quadrigram level with the appropriate pointers is gen-
erated 126. The link structure contains at least an address of
the first character of the fourth word in the quadrigram, the
number of characters in the fourth word, a count equal to
one, and the address of a next quadrigram for the word under
analysis to generate a chain of quadrigrams for the word
being scanned.

In an alternate embodiment, instead of first processing all
1-grams, then all bigrams, then all trigrams and then all
quadrigrams, the process may generate all the 1-grams,
bigrams, trigrams and quadrigrams for a particular word,
then go to the next word, and so on, until all words are
processed.

As mentioned above, a backward ngram analysis is also
performed unless there are no rhyme words (indicated by the
absence of rhyme numbers). The backwards ngram struc-
tures (with 1-grams, bigrams, trigrams and quadrigrams with
the words in reverse) is used for various stages in a recursive
process to generate lines that match a rhythm and rhyme
criteria fully described below.

An input to a thyme analysis utility is a set of poems with
the rhyme word sets indicated, as discussed above. A user
can convert a set of poems without rhyme word sets indi-
cated to one with the rhyme word sets indicated, using the
rhyme analysis utility.

The output of the rhyme analysis utility is a set of ngram
structures similar to bigrams. Instead of bigrams, however,
the word pairs indicate word rhyme pairs.

For a rhyme pair “a” and “b”, both “a” followed by “b”
and “b” followed by “a” are put in as thyme “bigrams”.

For rhyme sets of more than two words, all combinations
are generated. Thus, by way of example, if “spin”, “begin”

US 6,647,395 B1

7

and “within” were a three word rhyme set, then all of the
following six rhyme “bigrams” would be put into ngram
structures:

spin begin

begin spin

spin within

within spin

begin within

within begin

The rhythm and rhyme structures found in the poems are
also analyzed and saved by the process. A rhythm/rhyme
structure of “20 a b b a” signifies that the lines have an
average of 20 syllables, and the rhyme pattern is the last
word of the first line rhymes with the last word of the fourth
line, the last word of the second line rhymes with the last
word of the third line, and so forth.

The number of syllables in a word is determined by the
process as a mapping of the number of characters, based on
a set of parameters, and therefore, the number of syllables is
only an estimate.

There are three forms of output from the rhyme analysis
utility:

1. printing of all rhyme pairs

2. printing of all words on a line which all rhyme with

each other.

3. printing of the rhythm and rhyme structures found in

the analyzed poems.

In summary, the process 30 (of FIG. 2) generates and
stores a series of data structures for an author’s poem in a
data file. Each author poem has a data file containing linked
data structures representing rhyme sets and words that
precede and follow each individual word of each individual
poem, ie., 1-grams, bigrams, trigrams and quadrigrams.
This datafile is used by the process to generate original
poetry that may rhyme or not. As a user inputs a word via
a word processing program, the process locates the user
word in an appropriate author analysis model. Once the
word is located in the author analysis model, the process 30
can generate a next word, can complete a line, and/or can
complete a poem by looking at the 1-grams, bigrams,
trigrams and quadrigrams for the user word.

Referring now to FIG. 10, a process 130 used for basic
word generation includes generating 132 a list of words that
follow the last word written by a user or automatically by the
process and saved in memory, providing a user linked data
structure. Pointers to user n-gram data structure generated
for a new original poem, described below, are continually
updated, so that the pointer for the current bigram becomes
a pointer to the current trigram once a word is written by the
user or process.

A new word is received 134 from the user (e.g., via
keyword input in a word processing program) or randomly
generated by the process from an author analysis model. A
count is determined 136 for the user n-gram structure being
assembled (i.e., 1-gram, bigram, trigram and quadrigram)
and stored in memory for the new poem. A score is com-
puted 138 for each new word input by the user. A bigram
count is raised to the bigram__exponent__parameter power
and multiplied by the bigram_ weight. The trigram count is
raised to the trigram_ exponent parameter power and mul-
tiplied by the trigram_ weight. The quadrigram count is
raised to the quadrigram__exponent_parameter power and

10

25

30

8

multiplied by the quadrigram_ weight. These three values
are added together to form the score for that word. Thus,

score=author_ weight*(ngram_2_ weight*
(ngram_ 2_ count**ngram_2_ exponent)+(ngram_ 3_ weight*
(ngram_ 3_ count**ngram_ 3_ exponent)+(ngram_ 4 weight*
(ngram_ 4_ count**ngram_ 4_ exponent))

If there is more than one author analysis model in a poet
personality being used by the user in generating the new
poem, described below, then the score is the sum of the
scores achieved for each author analysis model selected by
the user and contained in the poet personality. The param-
eters author weight, ngram_ 2 weight, ngram 2
exponent, ngram__3_ weight, ngram_3__exponent, ngram__
4 weight, and ngram_ 4 exponent are different for each
author in a poet personality.

A poet personality contains one or more author analysis
models and is under user control. If the poet personality
contains more than one author analysis model, each of the
link structures contained in each author analysis model are
used by the process to generate new words, lines and stanzas
for the user. Each author analysis model within a poet
personality has its own set of bigram, trigram and quadri-
gram exponent and weight parameters. There is also an
overall parameter providing weight for each author analysis
model (author_weight) within a poet personality, which
also can be user selected.

After the user inputs a word, the process uses a random
number generator to choose 140, a next word from a list of
possible bigram/trigram/quadrigram words found in the
author analysis model(s) within the poet personality, with
each process provided word given a probability of being
selected proportional to its score. A root “word” (BOP) is

5 selected 142 which has bigrams to words in the author

40

45

50

55

60

65

analysis model that start with the BOP special character. A
word is then written 144 by the process that ends with the
special character EOP. The process determines 146 whether
there is another word inputted by the user. If not, the process
ends 148. If there is another word, the process begins again
132.

Using the basic word generation process described above
with reference to FIG. 10, the process 130 may write a poem
without rhythm and rhyme structure (i.e., ignoring rhyme
numbers) and with rhythm and rhyme structure (i.e., con-
sidering rhyme numbers).

Referring now to FIG. 11, a process 160 for writing a
poem without rhythm and rhythm structure begins with
Beginning of Poem (BOP) that points to words that start
with the End of Poem (EOP) special character 162. The
process continues where nl__gram points 164 to this first
printed word. The wvariables n2_gram, n3_ gram, and
n4__gram are initialized 166 to zero. The process loops back
to 172 to recursively begin again. If the last word written
ends with the End of Poem (EOP) special character 168 the
process ends at 170. Otherwise, the process loops back 162.

Writing a poem with rhythm and rhyme structure involves
recursive generation of each line to achieve rhyme and
rhythm.

As described above, a poem maybe generated simply by
starting with (EOP) and generating words using the basic
word generation process of FIG. 10 until a word ending in
(EOP) is generated.

A poem may optionally have a rhythm and rhyme struc-
ture.

A rhythm structure specifies a target length for the line as
a number of syllables. In a particular embodiment, the

US 6,647,395 B1

9

process does not use a dictionary specifying the number of
syllables in each word. Instead, a simple look-up table is
used to map the number of characters in a word to the
number of syllables.

A target length for a line is the number of syllables
specified by the rhythm structure plus or minus a fraction of
that length specified by a parameter.

The rhyme structure specifies the pattern of rhyme words,
as well as the number of lines.

For example, a poem may specify 20 syllables and a
rhyme structure of: “1,1,2,2,3,3,4,4”.

This means there are eight lines and the last word in line
1 rhymes with the last word in line 2, the last word in line
3 rhymes with the last word in line 4, the last word in line
5 rhymes with the last word in line 6, and the last word in
line 7 rhymes with the last word in line 8.

If a rhyme structure was 1,2,2,1,3,4,4,3, then the last word
of the first line rhymes with the last word of the fourth line,
the last word of the second line rhymes with the last word
of the third line, the last word of the fifth line rhymes with
the last word of the eighth line, and the last word of the sixth
line rhymes with the last word of the seventh line.

Rhythm and rhyme structures may be extracted from an
author analysis model or specified by the user or designer.

A recursive generation process is used to generate lines
provided by the basic word generation process described
above with reference to FIG. 10, yet also follows the rhythm
and rhyme structure. Using the recursive generation process,
the process potentially tries every combination of valid word
sequences (generated by the basic word generation process
of FIG. 10) to find (the first) word that matches the rhythm
structure (defined as a length in syllables, with the number
of syllables in each word inferred from word length) and
rhyme structure (defined as finding a line end word that is in
a rhyme pair with a target rhyme word in a previous line, if
any).

Each displaying and/or storing of a new poem involves
the execution of three routines, i.e., a write word routine, a
write line routine, and a write poem routine.

Referring to FIG. 12, a process 180 used for writing a
word with rhythm and rhythm structure begins with initial-
izing 182 an arbitrary success variable to zero. The word
generation process of FIG. 10 is used to select 184 a word
from an author analysis model that has not been selected yet.
A determination 186 is made if there are no words that have
already been selected in this loop that are remaining. If there
are no words, the process backs up 188 one word in the
author analysis model and then loops to select 184 a word.
If there are words that have been selected, a determination
190 is made on whether the line is now “successful”.
Success is defined as being within the length range and
having a proper thyme word if a rhyme word is needed, or
any word if no rhyme word is needed. If the word is
successful, the word is displayed or stored 192. Updated
pointers into the linked ngram structure are generated 194
for the dynamic user n-gram structure being used to repre-
sent the words being written by the process for the user. The
success variable is then set equal to one 196 and the process
exits 198. If the word is not successful, a determination 200
is made on whether the selected word is less than the
maximum length and not having a proper rhyme word
within the length range. The selected word is displayed 202
if it is less than the maximum length and does not have a
proper thyme word within the length range. The pointers
into the user n-gram structure are updated 204 and the
process initializes 182 the success variable to zero. If the
selected word is greater than the maximum length and has

5

10

15

20

25

30

35

40

45

50

55

60

65

10

the proper rhyme word within the length range, the process
backs up one word 188 in the other analysis model.

Referring to FIG. 13, a process 210 used for writing a line
with rhythm and rhythm structure begins by writing 212 a
word (in the method described in conjunction with FIG. 11).
The process then determines 214 whether the success vari-
able is set equal to zero. If the success variable is equal to
zero, the process writes 212 a word obtained from the author
analysis model. If the success variable is not one, the process
exits at 216.

Referring to FIG. 14, a process 220 used for writing a
poem with rhythm and rhythm structure starts 220 with the
special character end of poem (EOP). A set of variables are
initialized 224. More specifically, n1__gram points to EOP.
N2 gram,n3_ gram,n4 gram are all set equal to zero. The
process writes 226 a line before the EOP. The process
determines 228 if the last word written in the most recent
line ends with the special character end of poem (EOP). If
it does not, the process writes 226 a line. If the last word
written does end with the special character end of poem
(EOP), the process exits 230.

The above process 220 describes a forward recursive
method to write a line using a Markov modeling based
next-word generation process, and using a recursive method
to generate all possible word combinations until an appro-
priate thyme word is found (if any are required) within the
appropriate length (rhythm) range. This recursive process
may loop indefinitely, and thus a time limit is used. If this
time limit is exceeded, then other strategies are used by the
process which may “break” the link between the last word
of the previous line and the first word of the current line. The
following alternatives may be:

1. First try, the above forward recursive algorithm within

a time limit (time_ limit). If successful, the process is
finished with the line;

2. If (1.) is not successful within time_ limit_1, then try
a backward process. Generate the line backwards, using
a backwards link structure. The “first” word in the
backwards line (which will become the last word) is the
desired rhyme word. Generate the line backwards in the
same recursive manner as (1.) above, until the last word
in the backwards line (which will become the first
word) is found that properly links up with the actual last
word of the previous line. This process is tried within
the time limit defined by time_ limit 2;

3. If (2.) is not successful within time_ limit_2, then try
the backwards process again, but the last word in the
backwards line (which will become the first word in the
line) may be any start-line word (i.e., any word that
begins with the character (BOL)), not necessarily one
that links to the actual last word of the previous line.
This process is tried within the time limit defined by
time__limit_ 3; if 3 is not successful with time__ limit__
3, then try the backwards process again, but the word
in the backwards line (which will become the first word
in the line) may be any word, not necessarily one that
starts with the character (BOL).

Referring back to FIG. 3, the user of the process 40 selects
an interface 46. The user may select the screen saver
interface 50. As a user “right clicks” on the desktop of the
Windows 95 operating system user interface, a dialogue box
appears. Choosing “properties,” then “screen saver,” then
“poet screen,” generates additional screen saver dialogue
boxes that are used in conjunction with the computer gen-
erated computer system as described above.

In an embodiment, a primary screen saver dialogue con-
tains one or more of the following information and options.

US 6,647,395 B1

11

Information on upgrade A link to a dialogue box which
contains further information
including ordering

Length of time to wait before
initiating screen saver mode
and which comer of the screen
moving the mouse to will
initiate screen saver mode
Activates the number chosen

Basic screen saver options

Select from available poet
personalities

Select order

Color of poems

Random or sequential
Random or selected

Background Color

Font Font color

Size Font size

Save Write to disk or not
Scrolling Rate of scrolling

On or off
Stop or rate of scrolling

Random number generator
Control Scrolling

The above choices may have default values. The choices
also may require more than one dialogue box, in which case
appropriate parameters would be grouped into a secondary
box.

Once the screen saver is activated, one poem after another
scrolls by at a user controllable rate (controlled by a dialogue
box parameter). The poems appear in a font, font size and
color selected by the appropriate dialogue box parameters
with the specified color.

Referring back to FIG. 3, the user may select the poet
assistant user interface 50. An example of poet’s assistant
interface is shown in FIG. 16, described below. In a poet’s
assistant dialogue box within the word processing program,
the user selects as many poet’s assistant windows as desired.
For each selected window, the user further chooses a poet
personality, and a choice of ‘next word display,” ‘finish line
display,” or ‘finish poem display.” As will become apparent,
a choice of next word display will provide a ‘next word” after
the user types a word in the word processing program, the
choice of ‘finish line” will provide a completed line after the
user types a word in the word processing program, and the
choice of ‘finish poem” will provide a complete poem, i.c.,
one stanza, after the user types a word in the word process-
ing program.

The poet’s assistant dialogue box also includes a button to
activate a ‘define poet personality’ dialogue box, described
below, and an ‘analyze author’ dialogue box. In an
embodiment, these two actions, i.e., define poet personality
and analyze author, may be activated from a tools pull-down
menu when the poet’s assistant dialogue box is open or when
the word processing program is open.

As previously mentioned, the user writes his/her poem(s)
in a word processing program executing on Microsoft Win-
dows95®. Superimposed in Microsoft Word®, for example,
while the user is writing his/her poems are the multiple
poet’s assistant windows, as selected in the poet’s assistant
dialogue box. Each poet’s assistant window starts out at a
certain size, but can be moved and sized by the user as
provided by the operating system.

Each poet’s assistant window has a title indicating the
name of the poet personality, the authors included in that
poet personality, and an indication of whether it is a next
word display, next line display, or finish poem display.

The process of the computer generated poetry system will
write one word at a time in each of the windows, alternating
between each of the windows. Once the visible portion of
the windows is filled, process continues to write words to all
of these poet’s assistant’s windows, so the user may scroll
to view the additional text, as provided by the operating
system.

10

15

20

25

30

35

40

45

50

55

60

65

12

The user can cut, copy and paste text from any of these
poet’s assistant windows to his or her poem in the Microsoft
Word display, as provided by the operating system and the
word processing program. Additionally, the user may write
a word and query the process to provide a list of all the
words that rhyme with that word as found in any of the
author analysis models.

A “Define Poet Personality” dialogue box may be acti-
vated by a button in the Poet’s Assistant Dialogue Box (or,
alternatively, by selection of an item from a Tools menu).

A Poet Personality is based on the previous analysis of
one or more authors and thus involves one or more author
analysis models. The Define Poet Personality dialogue box
prompts the user to select one or more authors from the list
of authors that have been analyzed previously and for which
author analysis models exist. The user is also prompted to
give a personalized name to the Poet Personality.

For each author analysis model in the Poet Personality, the
user can link to another dialogue box to provide poem
generation parameters for that author analysis model within
the Poet Personality. If the user does not link to this
additional dialogue box, then default parameters are pro-
vided.

In an embodiment, these parameters are listed in the
following table with their default values, if appropriate.

default = 1

default = 1

default = 1. A high exponent
will give higher priority to
higher bigram counts. A bigram
exponent = >3 or 4 will tend to
give absolute priority to

higher counts. An exponent of
1 will scale the probabilities
equal to the relative counts.

An exponent between 0 and 1
will give only soft priority to
higher counts. Thus a high
exponent will more closely
follow the original author, but
too high an exponent risks
writing the same poem over and
over. Negative exponents will
actually give higher weight to
lower counts and visa versa.

Overall Weight for this Author
Weight of bigram original poet
Exponent of bigram original
poet

Weight of trigram original poet default = 1

Exponent of trigram original default = 1

poet

Weight of quadrigram original default = —100. The reason
poet for a high negative weight for

the quadrigram original poet is
that we are using the
quadrigram original poet as a
plagiarism avoidance algorithm.
A large positive weight on the
quadrigram original poet would
closely follow the original
author, but would risk
plagiarizing that author. A
large negative weight prevents

plagiarism.
Exponent of quadrigram original default = 1
poet
Probability of using the rhythm/ default = 1

rhyme structures for this
author

A high exponent exaggerates the difference in counts. For
example, an exponent of 2 means that a count of 1 stays 1,
whereas a count of 2 becomes 4 and a count of 3 becomes
9.An exponent of 3 means that a count of 1 stays 1, whereas
a count of 2 becomes 8 and a count of 3 becomes 27. In a

US 6,647,395 B1

13

particular embodiment, all parameters including exponents
are floating point and can include fractions. Thus, a high
exponent (4 or greater) would tend to make the higher counts
usually “win”. A very high exponent would mean that the
highest count would win virtually all the time. The advan-
tage of a high exponent is that it tends to select the words
with the higher bigram or trigram counts, and thus follows
more closely the word patterns found in the author analysis
model. It should also be noted that the generated poems
would not plagiarize the poems of the original authors
because of the high negative weight on the quadrigram
original author analysis model which tends to act as an
anti-plagiarism safeguard. The disadvantage of a high expo-
nent is that the process will tend to always select the highest
count and thus will be more likely to repeat itself. With a
very high exponent, the process will tend to always write the
same poem given the same start word. For this reason, the
process does not use the parameters for the first word, but
uses default parameters with weights and exponents=1. With
a very high exponent, the process will tend to write the same
poem for a particular start word, and thus will write as many
different poems as there are start words, which would
approximately equal the number of poems that were ana-
lyzed in the author analysis model. Thus a very high
exponent would result in interesting poems, but a limited
number of them.

The advantage of lower exponents (around 1) is that the
number of poems is very large, but they will follow the
original author somewhat less closely. An exponent of 1,
however, will weight the probabilities in the same way that
the original author did.

Exponents between 0 and 1 will emphasize higher counts
only in a “soft” way, and will give only somewhat higher
weight to higher counts. An exponent of 0 will ignore counts
and will give all of the possible bigram and trigram words
an equal weight regardless of their frequency in the author
analysis model. However, the next word will still be limited
to word sequences that did occur in the bigrams and trigrams
of the author analysis model.

Anegative exponent will give preference to lower counts.
A high negative exponent will tend to give absolute priority
to the lowest count, which is usually 1.

The bigram and trigram original poet weights provide the
relative influence of these two original poets. The trigram
original poet will tend to produce word sequences that more
closely follow the original author, although again plagiarism
is avoided as long as there is a strong negative weight on the
quadrigram original poet.

A strong negative weight on the quadrigram original poet
will avoid plagiarism (defined as four words in a row that
match the original author), although if none of the possible
bigram and trigram words avoids a four-long string from the
author analysis model, then one of these words will be used
even though that four-word sequence appeared in the author
analysis model. Otherwise, the program would just have to
halt, which is not desirable. Thus a strong negative weight
on the quadrigram original poet avoids plagiarism unless it
cannot be avoided in a particular situation, which would tend
to be rare.

If one puts a strong positive weight on the quadrigram
original poet and a high quadrigram exponent, then the
process would tend to generate poems that matched the ones
analyzed.

An Analyze Author dialogue box is activated by a button
in the Poet’s Assistant Dialogue Box (or, alternatively, by
selection of an item from the tools menu), and is part of the
operating system and associated word processing program.

10

15

20

25

30

35

40

45

50

55

60

65

14

The user specifies an input and output file. The input file
contains poems in the appropriate format. The output file
contains the analyzed model.

The user also specifies the name of the author (or some
other description of the collection of poems/text being
analyzed).

The dialogue box contains a button which activates the
analysis.

It is preferred that the analysis should contain some
progress indicator.

Another button activates an interactive utility that allows
the user to specify rhyme words within a set of poems.

As indicated above, a name is specified for the poet
personality.

For each poet personality (which can include multiple
author analysis models), a number of authors may be speci-
fied. For each author within a poet personality, there are the
following parameters with their C language data types:

Identity of author file STRING User input

author_ weight DOUBLE weight of an author
within a poet
personality

weight for the bigram
for this author within
this poet personality
exponent for the bigram
count for this author
within this poet
personality

weight for this trigram
for this author within
this poet personality
exponent for the
trigram count for this
author within this poet
personality

weight for the
quadrigram ram for this
author within this poet
personality

exponent for the
quadrigram count for
this author within this
poet personality

Ngram__2_ weight DOUBLE

Ngram_ 2 exponent DOUBLE

Ngram__3_ weight DOUBLE

Ngram__ 3 exponent DOUBLE

DOUBLE

Ngram__4_ weight

Ngram_ 4 exponent DOUBLE

Thus, in poet’s assistance mode, the user is writing his or
her own poem using a suitable word processing program.
The process monitors what the user is writing. The process
displays a number of windows that provide suggestions to
the user to help stimulate the user’s imagination. Each
window is associated with a particular poet personality, that
is defined by one or more author analysis models plus a set
of poetry generation parameters for each author analysis
model described above.

Referring to FIG. 15, a poet’s assistant graphical user
interface (GUI) 250 includes a word processing region 252
and a number of poet’s assistant’s windows 254, 256, and
258. Although only three poet’s assistant’s windows 254,
256, and 258 are shown, any number of poet’s assistant’s
windows may be requested by a user. In the poet’s assistant
GUI 250, poet’s assistant window 254 is a next word
window. Poet’s assistant window 256 is a finish line
window, and poet’s assistant window 258 is a finish poem
window. Other windows that may be requested by the user
include an alliteration window (not shown) and a rhymes/
endings window (not shown).

Each of the poet’s assistant windows 254-258 provide
output in response to highlighted words generated by the
user in the word processing region 252. Specifically, the next

US 6,647,395 B1

15

word window 254 provides suggestions for a next word in
a style of a poet personality chosen by the user. The finish
line window 256 provides suggestions for an entire line of
text in the style of the poet personality chosen by the user.
The finish poem window 258 provides a finished poem in the
style of the poet personality chosen by the user.

The rhymes/endings window (not shown) provides sug-
gestion of words that rhyme with the users inputted words in
the poet’s assistant GUI 250.

Each poet’s assistant window 254258 provides the user
with a selection of author analysis models to be included in
a poet personality.

As mentioned above, the user can have as many poet’s
assistant windows opened as desired. It is recommended that
the user have multiple poet’s assistant windows to provide
as much stimulation as possible. For example, the user could
have ten windows, three of which would be associated with
a Robert Frost author analysis model, one in finish poem
mode 258, one in finish line mode 256 and one in next word
mode 254, two windows associated with a T. S. Elliot author
analysis model and four other windows associated with
other author analysis models.

Every time the user writes another word in the word
processing region 252 using the word processing program or
in any way modifies the poem he or she is writing, all of the
poet’s assistant windows 254—258 change. The user can use
the mouse to select words or any size selection of text from
any of the poet’s assistant windows 254-258 to paste into
the poem being composed by the user in the word processing
region 252. Doing this would of course change the user’s
poem in the word processing region 252 and would cause all
of the poet’s assistance windows 254-258 to change and
generate new suggestions.

A purpose of the poet’s assistant GUI 250 is not neces-
sarily to write the user’s poems for him or her, but rather to
spark the user’s imagination, to help suggest words, phrases,
ideas, etc. In writing poetry one of the most difficult aspects
is finding ideas and suggestions for words and phrases. Such
reference works as dictionaries, thesauruses, rhyming
dictionaries, etc., are usually limited in their usefulness for
this purpose. The poet’s assistance mode is intended to
provide a rich ever-changing source of such words and
ideas.

As mentioned above, the poet’s assistance GUI 250 also
provides assistance in finding rhyme words in rhyme word
window (not shown). The user can highlight words in the
word processing region 252 from which rhymes are desired,
and the poet’s assistant rhyme window will suggest rhyme
words that were actually used for the original author’s that
were analyzed in any of the selected author analysis models
of the poet personality. The finish poem window 258 and
finish line window 254 also write lines in poems that follow
the appropriate rhyme structure.

The author analysis can also analyze his or her own poems
as a basis for an author analysis model and then define one
or more poet personalities based on his or her own work. In
this way, in the poet assistant GUI 250, suggestions will be
provided as to how the user himself or herself would finish
a poem or line or suggest the next word based on that user’s
own work. A user can also generate poet personalities that
combine his or her own author analysis model with the
author analysis models from other authors.

It is to be understood that while the invention has been
described in conjunction with the detailed description
thereof, the foregoing description is intended to illustrate
and not limit the scope of the invention, which is defined by
the scope of the appended claims. Other aspects, advantages,
and modifications are within the scope of the following
claims.

16

What is claimed is:
1. A computer-implemented method of generating a poet
personality comprising:
analyzing a plurality of poems represented in a text file;
5 generating a plurality of analysis models, each of said
analysis models representing one of said plurality of
poems; and
storing the plurality of analysis models in a personality
data structure, wherein each analysis model in the
personality data structure has a set of bigram, trigram
and quadrigram, exponent and weight parameters.
2. The computer-implemented method of claim 1 wherein
the personality data structure has a plurality of weights, each
of the weights associated with a corresponding one of the
plurality of analysis models.
3. The computer-implemented method of claim 2 wherein
each of the plurality of weights comprises an integer value.
4. The computer-implemented method of claim 1 wherein
each of the link structures of each author analysis model are
used to generate new words, lines or stanzas for the user.
5. The computer program product of claim 1 wherein the
poet personality data structure combines authors by gener-
ating poet personalities from multiple author analysis mod-
els.
6. The computer-implemented method of claim 1 wherein
an overall parameter provides a weight for each author
analysis model within a poet personality.
7. The computer-implemented method of claim 1 wherein
as a new word is received from a user or randomly generated
from an author analysis model, a score is computed for each
new word with the score being related to an author_ weight,
ngram weights, ngram counts and ngram exponents.
8. The computer-implemented method of claim 7 wherein
if there is more than one author analysis model in the poet
personality, then the score is the sum of the scores achieved
for each author analysis model.
9. The computer-implemented method of claim 1 further
comprising:
generating a list of words that follow the last word written
by a user or automatically by the process and saved;

updating pointers to generated user n-gram data
structures, so that the pointer for a current bigram
becomes a pointer to a current trigram once a word is
written by the user or process.

10. The computer-implemented method of claim 1
wherein each poet assistant window has a title indicating the
name of the poet personality, the authors included in that
poet personality, and an indication of whether it is a next
word display, next line display, or finish poem display.

11. The computer-implemented method of claim 1
wherein the poet personality data structure combines authors
by generating poet personalities from multiple author analy-
sis models.

12. The computer-implemented method of claim 10
wherein the user selects as many poet’s assistant windows as
desired.

13. The computer-implemented method of claim 12
wherein for each selected window, the method further com-
prises:

choosing a poet personality and a next word display to

provide a next word after the user types a word in the
word processing program.

14. The computer-implemented method of claim 12
wherein for each selected window, the method further com-
prises:

choosing a poet personality and a finish line display to

provide a completed line after the user types a word in
the word processing program.

10

15

30

35

40

45

50

65

US 6,647,395 B1

17

15. The computer-implemented method of claim 12
wherein for each selected window, the method further com-
prises:

choosing a poet personality and a finish poem display to

provide a completed poem after the user types a word
in the word processing program.

16. The computer-implemented method of claim 12
wherein the poet’s assistant dialogue box further comprises:

a button to activate a define poet personality dialogue box,

and an analyze author dialogue box.

17. The computer-implemented method of claim 12
wherein each poet’s assistant window has a title indicating
the name of the poet personality, the authors included in that
poet personality, and an indication of whether it is a next
word display, next line display, or finish poem display.

18. The computer-implemented method of claim 12
wherein the computer implemented method alternately
writes one word at a time in each of the windows.

19. The computer-implemented method of claim 12 fur-
ther comprising:

applying word processing editing functions to any of the

poet’s assistant windows to allow transfer of text to the
generated poem in the word processor window.

20. The computer-implemented method of claim 12 fur-
ther comprising:

querying author analysis models to provide a list of

words, as found in any of the author analysis models,
which rhyme with a word specified by a user.

21. The computer-implemented method of claim 12 fur-
ther comprising:

monitoring what a user is writing;

displaying a number of windows that provide suggestions
to the user, with each window associated with a par-
ticular poet personality, which is defined by one or
more author analysis models and a set of poetry gen-
eration parameters for each author analysis model.
22. A computer program product residing on a computer
readable media for generating a poet personality comprising
instructions for causing a computer to:

10

15

20

25

30

35

18

analyze a plurality of poems represented in a text file to
produce a plurality of analysis models, each of said
analysis models representing one of said plurality of
poems; and

storing the plurality of analysis models in a personality
data structure, wherein each analysis model within a
personality data structure has its own set of bigram,
trigram and quadrigram exponent and weight param-
eters and an overall parameter provides a weight for
each analysis model within a personality data structure.

23. The computer program product of claim 22 wherein
the personality data structure has a plurality of weights that
are associated with the plurality of analysis models.

24. The computer program product of claim 22 wherein
each poet assistant window has a title indicating the name of
the poet personality, the authors included in that poet
personality, and an indication of whether it is a next word
display, next line display, or finish poem display.

25. The computer program product of claim 22 further
comprising instructions to:

compute a score for each new word with the score being
related to an author weight, ngram weights, ngram
counts and ngram exponents as a new word is received
from a user or randomly generated from an author
analysis model.
26. The computer program product of claim 25 wherein if
there is more than one author analysis model in the poet
personality, then the score is a sum of the scores for each
author analysis model.
27. The computer program product of claim 22 further
comprising instructions to:
generate a list of words that follow the last word written
by a user or automatically by the process and saved;

update pointers to generated user n-gram data structures,
so that the pointer for a current bigram becomes a
pointer to a current trigram once a word is written by
the user or process.

